
Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

Comparing Encode Times and Size Difference of

Lossless Image Compression Formats for LSB

Image Steganography
Geef mij maar Nasi Goreng

Reza Hadi Fairuztama, 18218046 (Author)

Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): rreza510@gmail.com

Abstract—This document will attempt to benchmark the

effects of LSB Image Steganography on various image

compression methods. After testing, it resulted that there is no

significant change in time encoding and file size before and after

LSB steganography.

Keywords—image, steganography, lossless, compression

TABLE OF CONTENTS

Table of Contents... 1

Table of Figures ... 1

I. Introduction ... 1

II. Definitions ... 1

A. Steganography .. 2

B. Least Significant Bit (LSB) Image Steganography 2

C. Digital Image Compression 2

D. Image Encoding ... 3

1) PNG.. 3

2) BMP ... 3

3) TIFF ... 3

4) QOI .. 3

III. Methodology .. 3

A. Analysis .. 3

B. Data gathering .. 4

IV. Results ... 4

A. Time ... 4

B. Size ... 5

V. Conclusion ... 5

TABLE OF FIGURES

Fig. 1. LSB Steganography infographic 2

Fig. 2. Plaintexts used in the experiment 4

Fig. 3. The average values for saving time by plaintext 4

Fig. 4. The standard deviation for saving time by plaintext

 4

Fig. 5. The T-values for saving time by plaintext 5

Fig. 6. The average values for resulting filesize by

plaintext 5

Fig. 7. The standard deviation for resulting filesize by

plaintext 5

Fig. 8. The T-values for resulting filesize by plaintext...... 5

I. INTRODUCTION

Steganography is a method of hiding a plaintext in another

object so that it is undetectable by third party observers. This is

useful for when you want to hide the fact that you sent a message

in the first place, and not just to hide the true meaning of your

message.

However, as data compression, and lossless image

compression in particular, exploits statistical redundancies

within an image, the insertion of a non-random steganography

data might impact the algorithm in a way that might tip off third

party listeners that something is off. It may also give overhead

budget for when we want to use steganography for things such

as metadata storage or 3d texture shader shenanigans.

In this paper, I will use the LSB image steganography

method and look at the impact it does in the various image

compression methods available today, by encoding time and size

difference. Whether it is statistically significant enough to be

exploited in further cryptoanalysis or not.

II. DEFINITIONS

In this chapter, i will give a short explanation that will be

useful for understanding this paper, but sadly not the author.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

A. Steganography

Steganography refers to the act of hiding or concealing an

information within an object in such a way that any third party

looking at the object is unaware of the existence of the

information within. This differs from cryptography in that, while

steganography ensures that the information is hidden from third

party “listening in”, they do not obfuscate the meaning of the

message by itself. Instead, it makes sure that the message does

not seem to exist in the first place. Thus they can, and usually

are used together, though not always, as in the form of a

watermark.

Steganography has been used since long ago in many form,

from writing a message on a slave’s shaved head then waiting

for it to grow back, to hiding the message in an ink only visible

after appliances of a specific chemical, to obfuscating the

message by mixing within non-important and innocent-looking

informations (eg. Taking the first letter of every word, taking

every fifth words, etc.), to digitally hide them within a digital

file.

Digital steganography covers the usage and methods of

hiding information within digital format. It might uses a text file,

an image file, audio/video file, or any other file format available,

though each format would of course warrant different method in

hiding the message. In this paper we will use one such method,

for hiding information within an image: the LSB Image

Steganography.

B. Least Significant Bit (LSB) Image Steganography

In a digital raster image, images are represented by a matrix

of pixels. A pixel can be represented by a number of color

channel, usually 1, 3 or 4, within each channel is a number

representing how “bright” each channel is. The most common

image format are 8-bit RGB, where there are 3 channels of Red,

Green, and Blue, each with bitlength 8. Thus, each channel have

a range of 0 to 28 – 1 = 255.

Least significant bit, thus, refer to the 20 bit of each of these

channels in the pixels of an image. The LSB Image

Steganography uses these bits to insert the plaintext. This will

change the image, but as it was the least significant bit, it is

perceptually almost indistinguishable from the original image to

our eyes.

Note that, while this paper will only use the 20-st bit, there is

nothing stopping us to use the next, 21-nd bit, or the 22-rd bit,

and so on. It is, however, a trade-off between more space, and

distruption on the image represented.

C. Digital Image Compression

A common format for a raster image is composed of a matrix

of pixels, composed of 3(RGB) or 4(RGBA) 8-bit channels.

These are enough to acceptably represent images in the digital

realm without leaving too much color detail. It is, however, not

very economical to store these naively in disk. A common

resolution used in camera output, 1600x1200 pixels, is already

1.920.000 pixels, which have 3 channels of 8 bits, or 2 bytes.

Fig. 1. LSB Steganography infographic

That means that a picture taken by a common camera would

consume around 11 megabytes each. Not much by today’s

standard, but it’s still a waste of space.

Instead, images are usually stored by first running it through

a data compression algorithm. Data compression is the practice

of encoding information so that it is smaller than the original

representation.

There are two type of compression: lossy, and lossless.

Lossy compression exploit the deficiencies of human perception

by eliminating details that won’t be noticeable to us, such as the

exact color value of a pixel within its surrounding pixels, or the

overlapping nearby frequencies in a sound bite.

Lossless compression, meanwhile, tries to keep the exact

data intact while reducing its size. These usually exploit patterns

in the data instead, by reducing these found patterns by a single,

shorter representation, such as its redundancy or “entropy”, or

information content.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

D. Image Encoding

At the base level, computers only work with 1s and 0s. We

might group them by bytes and thus work in hexadecimal, but it

still stands that computer does not innately have any way to store

an image. Therefore, an encoding method to transform a 2D

image into a string of binary data is required for the computer to

be able to store our precious and less-precious memories in

visual form. Hence, image encodings.

In this paper, we will be working with raster images, which

store images by a matrix of pixel values. There are other kind of

image types like vector images, which store images by the basic

geometries that, when the math is done, form that image. Unlike

raster images, scaling up or down a vector image won’t lose any

detail. But unlike raster images, it is hard to make a vector image

with a camera. As such, they’re mostly used for logos, icons, and

websites, places where resizing images and keeping their detail

is rather important. There might be some way to make LSB work

in vector images, but this paper is nearing its deadline already as

is.

And so, in this paper, we will be using these four image

encoding formats, for they are the easiest to code for within the

constraint of all these final papers asked by every class all at

once--

1) PNG

Portable Network Graphics (PNG) is a file format for raster

images. It supports either grayscale image, palleted images

(image with a set number of colors), and full-color non-pallete-

based images. As the PNG format is designed for sending

images over internet, it only supports RGB color space. [1]

Compression in PNG consist of two steps; a pre-processing

step where with each image line, the algorithm tries to predict,

from a set of five filter, which one is best for efficient

compression. Then the second step uses DEFLATE, an

algorithm that combines LZ77 and Huffman Coding, to

compress each image line.

2) BMP

BMP fileformat, also known as Bitmap image file or Device-

Independent Bitmap (DIB) file is a image file format for raster

images. It supports images in grayscale and color, in various

color depths, and optionally with data compression and alpha

channels. [1]

Due to its simplicity as a file format, its widespread usage

thanks mostly to Windows, and that it’s an open format, BMP is

a very common file format for image processing programs to

write and read in.

3) TIFF

Tag Image File Format (TIFF) is an image file format for

raster images. It was created as a standard for scanning

documents, but has also gotten popular for faxing, OCR, image

manipulation, desktop publishing, etc. It supports image in

grayscale, RGB(A), and even CYMK. It is created by Aldus

Corporation in 1986, and continued updating up to 1992[1].

Unlike other formats, a .tiff file might contain more than one

image within it, which might contain one or more tag-value pair

within it, true to its name. Baseline tiff images are compressed

by strips, which contains one or more horizontal lines.

4) QOI

Quite OK Image (QOI) format is an image format and

algorithm specification created by Dominic Szablewski recently

at 24th November 2021. It supports RGB and RGBA 8-bit

channels image. The goal of this format was to make an open-

source, lossless compression method that’s faster and easier to

implement than PNG. The result were that, while PNG has

smaller file size, QOI has 20-50x faster encoding and 3-4x faster

decoding. [2]

The format encodes the image from left to right, up to down.

It uses a combination of simple run-length encoding, pixel

mapping, and difference marking. This allows it to be versatile

and relatively quick in encoding an image, without making it a

hodgepodge of special cases, prediction algorithms, and a thick

specificaiton standard a la PNG.

III. METHODOLOGY

In this chapter, i will explain the experiment i’ve done to find

out the thesis of this paper; whether LSB steganography

significantly changes the encoding time or size. Should this then

prove insufficient, the author expresses condolences and ask for

the reader’s forgiveness for the flaws not apparent in this fifth

paper in a row.

A. Analysis

The goal of this paper, and thus this experiment, is to see

whether LSB steganography have a noticeable impact to

encoding time and size. Therefore, i will be using a statistical,

two-sample T test to analyze the data, with significance level

0,01. Equation (1) is the main equation used to find the T-value

from the data, where ni is the data count for sample i (each at 12

images x 10 repetition = 120), is the difference of averages

between the two value, and is the standard error of

difference, gathered from (2).

 𝑡 =
∆𝜇

∆𝜎
 ()

 ∆𝜎 = √
((𝑛1−1)𝜎1

2)+((𝑛2−1)𝜎2
2)

𝑛1+𝑛2−2
× (

1

𝑛1
+

1

𝑛2
) ()

As for the analysis, the two hypothesis are as follow:

1. Hypothesis 0: LSB steganography does not change the

encoding time and compression size of an image.

2. Hypothesis 1: LSB steganography significantly change the

encoding time and compression size of an image.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

Therefore, the samples will be the time and size for a plain

image, and the time and size for a steganogrpahed image.

B. Data gathering

All of the codes for data gathering are in Rust. Everything in

this step (except for encoding into QOI, which uses the qoi 0.4.0

crate) is using Rust’s standard library crates, with default

parameters, all running non-consecutively as i will be running

this in windows and i am not sure and is too busy to find out if

Windows are unable to have concurrent disk writing, which

might skew the time figure by orders of magnitude.

For the experiment I have prepared a dataset of 12 images,

and 5 plaintext of various length and language. The code will

open eacah image and save them again, both to have uniform

image channels between images, and to give a baseline of an

unedited image. Each save is repeated 10 times, with each time

logged.

TABLE I. PLAINTEXTS

n Plaintext Bytes

1

宇宙に始まりはあるが終わりはない。 —-無限

星にもまた始まりはあるが、自らの力をもって滅び

逝く。 —-有限

英知を持つ者こそ、最も愚かであること。歴史から

も読み取れる。

海に生ける魚は、陸の世界を知らない。彼らが英知

を持てば、それもまた滅び逝く。

人間が光の速さを超えるのは、魚たちが陸で生活を

始めるよりも滑稽。

これは抗える者たちに対する、神からの最後通告と

も言えよう。

552

2

UNDANG-UNDANG DASAR NEGARA REPUBLIK INDONESIA

TAHUN 1945

PEMBUKAAN

Bahwa sesungguhnya kemerdekaan itu ialah hak

segala bangsa dan oleh sebab itu, maka

penjajahan di atas dunia harus dihapuskan,

karena tidak sesuai dengan perikemanusiaan dan

perikeadilan.

260

3

꧋ꦱꦧꦼꦤ꧀ꦲꦸꦮꦺꦴꦏꦁꦭꦲꦶꦂꦫꦮꦏꦏꦤ꧀ꦲꦛꦶꦩꦂꦢꦶꦏꦭꦤ꧀ꦲꦢꦂꦮꦧꦩꦂ

ꦠꦧꦠꦭꦤ꧀ꦲꦲꦶꦏꦲꦏꦏꦥꦁꦣ꧉ꦏꦮꦧꦃꦥꦶꦤ꧀ꦲꦫꦔꦁꦤ꧀ꦲꦲꦏ

ꦭꦭꦤ꧀ꦲꦏꦭꦸꦱꦂꦠꦏꦲꦶꦗꦧꦥꦱꦿꦺꦁꦸꦔꦤ꧀ꦲꦲꦁꦮꦺꦴꦮꦤ꧀ꦲꦺꦩꦩꦶꦼꦠꦿ

ꦤ꧀ꦲꦱꦶꦗꦶꦭꦤ꧀ꦲꦱꦶꦗꦶꦮꦤ꧀ꦲꦏꦤ꧀ꦲꦛꦶꦗꦶꦺꦱꦸꦩꦢꦸꦭꦸꦂ

432

4

Ми не чужі любити

Ви знаєте правила, і я теж

Я думаю про повну

відданість

Ви не отримаєте цього від

жодного іншого хлопця

Я просто хочу розповісти

тобі, як я почуваюся

Треба змусити вас

зрозуміти

Ніколи не здам тебе

Ніколи не підведу

Ніколи не буду бігати і

покидати вас

673

n Plaintext Bytes

Ніколи не змусить вас

плакати

Ніколи не попрощаюсь

Ніколи не скажу неправду і

не зашкодю тобі

5 Kentang 7

Fig. 2. Plaintexts used in the experiment

Afterwards, with each image, the code will steganography

each plaintext from the start of the image via LSB, and then save

it 10 times in each image format as well, making sure that it too

contains the same image channels all across the board, and like

the non-steganographed ones.

With the data at hand, i will put it in an Excel spreadsheet

and fiddle around it until i find the values needed for the

statistical analysis to take place.

IV. RESULTS

And thus, after all that preamble, which is 50% there so that

this paper have the neccesary page count, in this chapter i will

give the results i’ve gotten.

A. Time

After a night of leaving the computer on running the code,

and a morning of lugging the laptop turned on and churning the

algorithms through, the following tables are the processed

results of the data logged by the code. The immediately

following table is for the total average of saving time samples

per plaintext:

TABLE II. AVERAGES FOR SAVING TIME BY PLAINTEXT

 None 1 2 3 4 5

Bmp 757.84 750.63 755.98 770.22 826.35 795.71

Png

20930.9

2

20846.1

7

20883.6

7

21502.5

0

21837.9

2

21719.6

7

Qoi
23260.4
3

23201.9
6

23367.2
4

23881.0
2

24720.5
7

24363.5
9

Tiff 10.81 10.38 10.53 10.90 11.00 10.55

Fig. 3. The average values for saving time by plaintext

And the following are for the standard deviation for saving

time sample per plaintext:

TABLE III. THE STANDARD DEVIATION FOR SAVING TIME BY PLAINTEXT

 None 1 2 3 4 5

Bmp 605.50 596.57 603.75 625.48 783.67 663.30

Png

16994.3
0

16910.9
4

16955.2
3

17872.0
5

18420.5
2

18203.2
0

Qoi
19528.8
9

19471.6
4

19666.5
4

20541.4
5

21972.5
2

21146.6
0

Tiff 7.99 7.50 7.70 8.15 8.57 7.67

Fig. 4. The standard deviation for saving time by plaintext

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

Using these numbers, and using (2) and (1) to get the two-

sample T value for no-plaintext and each plaintext, these are the

resulting T-values:

TABLE IV. T-VALUES FOUND FOR SAVING TIMES BY PLAINTEXT

 1 2 3 4 5

bmp 9.29.E-02 2.38.E-02 1.56.E-01 7.58.E-01 4.62.E-01

png 3.87.E-02 2.16.E-02 2.54.E-01 3.96.E-01 3.47.E-01

qoi 2.32.E-02 4.22.E-02 2.40.E-01 5.44.E-01 4.20.E-01

tiff 4.35.E-01 2.81.E-01 8.89.E-02 1.76.E-01 2.61.E-01

Fig. 5. The T-values for saving time by plaintext

From the T-values alone, the differences seem to be very

small as to be insignificant. And indeed, as our T-critical value

for α=0.01 and with 120 + 120 – 2 = 238 degrees of freedom just

about equals 2.60, it seems that none of our results are above the

critical value by more than an order of magnitude, and we can’t

reject our null hypothesis.

B. Size

And in this subsection i have provided further processed

results in the following tables. The immediately following table

is for the total average of resulting filesize samples per plaintext:

TABLE V. THE AVERAGES FOR RESULTING FILESIZES BY PLAINTEXT

 (blank) 1 2 3 4 5

bm
p

220202
14.00

220202
14.00

220202
14.00

220202
14.00

220202
14.00

220202
14.00

png

853600
6.33

853653
6.58

853627
5.92

853640
1.17

853664
6.42

853601
8.50

qoi
976498
6.00

976524
7.00

976510
0.25

976517
9.00

976531
3.92

976498
9.17

tiff
220202
80.00

220202
80.00

220202
80.00

220202
80.00

220202
80.00

220202
80.00

Fig. 6. The average values for resulting filesize by plaintext

And, just like before, the following table are for the standard

deviation for resulting filesize sample per plaintext:

TABLE VI. THE STANDARD DEVIATION FOR RESULTING FILESIZES BY

PLAINTEXT

 (blank) 1 2 3 4 5

bm
p

175873
00.29

175873
00.29

175873
00.29

175873
00.29

175873
00.29

175873
00.29

png

735965
7.17

735967
5.34

735960
0.64

735964
8.76

735969
6.10

735965
5.32

qoi
825391
6.37

825383
9.86

825386
3.82

825385
3.24

825382
6.04

825391
4.85

tiff
175877
15.53

175877
15.53

175877
15.53

175877
15.53

175877
15.53

175877
15.53

Fig. 7. The standard deviation for resulting filesize by plaintext

...Before we continue, of significant note is that the .bmp and

.tiff format does not seem to change sizes between the plaintext

inserted. It seems that the default for Rust is to not encode them.

Good to know instead of the fact that a DynamicImage

implements From.

Anyway, just like before, we use the two table values to get

our T-value via (1) and (2), in which the results are as follows

TABLE VII. T-VALUES FOUND FOR RESULTING FILESIZE BY PLAINTEXT

 1 2 3 4 5

Bmp 0.00.E+00 0.00.E+00 0.00.E+00 0.00.E+00 0.00.E+00

Png 5.58.E-04 2.84.E-04 4.16.E-04 6.74.E-04 1.28.E-05

Qoi 2.45.E-04 1.07.E-04 1.81.E-04 3.08.E-04 2.97.E-06

Tiff 0.00.E+00 0.00.E+00 0.00.E+00 0.00.E+00 0.00.E+00

Fig. 8. The T-values for resulting filesize by plaintext

Even more than saving time, the resulting differences seem

to be very small. And indeed, with the T-critical value for α=0.01

and with 238 degrees of freedom just about equals 2.60, it seems

that none of our results are above the critical value by more than

an order of magnitude, and we can’t reject our null hypothesis

on this factor either.

V. CONCLUSION

From this short experiment, it was found that the LSB

steganography method does not seem to impact the encoding

time and compression size of an image significantly enough.

Though all of them tend to increase in size, this does not seem

to be statistically significant enough. On the contrary, some

image formats, namely .bmp and .tiff, does not have any

difference in size at all.

This could mean that detecting a steganographied image by

its (re-)encoding time or file size would be statistically infeasible

and would cause either false positives or false negatives. Or at

least, if it’s via a machine learning algorithm, then it should not

be used with it alone.

It could also mean that storing metadata for things that need

to run in real time, like 3d texture shader rendering in video

games or simulators, will not impact significantly in size and

storetime. Which means it might be possible for them to store

more data within its assets.

Or it could mean that this paper is not thorough enough.

Either or. It’s not like this is rushed through a pipeline of a

handful other, just as lengthy and researchful papers and projects

all announced and deadlined in the span of just about one month,

in the middle of trying to study for finals as well.

ah well, i tried.

REFERENCES

[1] Murray, James D.; vanRyper, William. Encyclopedia of Graphics File
Formats (Second ed.). O'Reilly, 1996.

[2] Lnu, Reducible. How PNG Works: Compromising Speed for Quality.
Youtube, 2022. URL:
https://www.youtube.com/watch?v=EFUYNoFRHQI Accessed by 25th
May 2022.

https://www.youtube.com/watch?v=EFUYNoFRHQI

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2021/2022

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 25 Mei 2022

Reza Hadi Fairuztama, 18218046

